in this solve any 1 pls
Attachments:
Answers
Answered by
1
Given :
⇒
Divide all the terms with the coefficient of x² i.e. a.
⇒
⇒
⇒
Add the square of the half of the coefficient of x on both sides i.e. L.H.S. and R.H.S.
⇒
Identity : a² + 2ab + b² = (a + b)²
Here, a= x, b = b/2a
⇒
⇒
⇒
⇒
⇒
⇒
⇒
Divide all the terms with the coefficient of x² i.e. a.
⇒
⇒
⇒
Add the square of the half of the coefficient of x on both sides i.e. L.H.S. and R.H.S.
⇒
Identity : a² + 2ab + b² = (a + b)²
Here, a= x, b = b/2a
⇒
⇒
⇒
⇒
⇒
⇒
Answered by
1
______________________________
GOOD MORNING!!
ax² + bx + c = 0
DIVIDE BOTH SIDE'S BY a
x² + bx/a + c/a = 0
=>
x² + 2 ( x ) ( b/2a ) + b²/4a² - b²/4a² +c/a = 0
=>
{ x + b/2a }² ={ b² - 4ac }/4a²=0
=>
{ x + b/2a } = ±√{b² - 4ac } / 2a
=>
x = { -b ± √ { b² - 4ac } } /2a
GOOD MORNING!!
ax² + bx + c = 0
DIVIDE BOTH SIDE'S BY a
x² + bx/a + c/a = 0
=>
x² + 2 ( x ) ( b/2a ) + b²/4a² - b²/4a² +c/a = 0
=>
{ x + b/2a }² ={ b² - 4ac }/4a²=0
=>
{ x + b/2a } = ±√{b² - 4ac } / 2a
=>
x = { -b ± √ { b² - 4ac } } /2a
Similar questions