Math, asked by abhibuddie, 1 year ago

IN TRAINGLE ABC ,RIGHT ANGLED AT B ,IF TAN A =1 /ROOT3,FIND THE VALUE OF

I)SIN A COS C + COS A SIN C .

PLEASE ANSWER ME FRENDS ...............^ . ^


Anonymous: ___k off
karan511671: hlo

Answers

Answered by arjun6068
134

tan \: a \:  =  \frac{1}{ \sqrt{3} }

a=30°

c=60°

sinA cosC +cosA sinC

=sin( A+C)

=sin=90

=1

✽✽✽✽✽✽✽

ɦσρε เƭ ɦεℓρร ყσµ 

✽✽✽✽✽✽✽


hanifsayyed18: welcome
arjun6068: ^_^
hanifsayyed18: ✌️✌️✌️
arjun6068: gud nite ✌✌
arjun6068: tc sd
hanifsayyed18: u2
arjun6068: :)
hanifsayyed18: where u from?
arjun6068: ✌✌
hanifsayyed18: bro where u from?
Answered by Anonymous
426

Solution:

It is given that In triangle ABC,Right-angled at B if tan A =1/√3.

•°• We have right-angled Triangle ABC in which tan A = 1/√3

☛ { From Given Attachment } ☛

Given, tan A = 1/√3 = BC/AB

________________________________

Let Side BC measure be k .

So, Side AB measure = √3k

•°• Using Pythagoras theorem , We have

By Pythagoras theorem, In ∆ABC ;

☛ H² = P² + B²

☛ Ac² = AB² + BC²

☛ AC² = (√3k)² + (k)²

☛ AC² = 3k² + k²

☛ AC² = 4k²

•°• ☛ AC = 2k

Now, on comparing Values of Trigonometric Ratio, We have ;

(I) Sin A = BC/AC =k/2k = ½

(ii) Cos C = BC/AC =k/2k = ½

(III) CoS A = AB/AC = √3k/2k = √3/2

(Iv) Sin A = AB/AC = √3k/2k =√3/2

Now, We have to find the value of ;i)SIN A COS C + COS A SIN C .

☛ ½ * ½ + √3/2 *√3/2

☛ 1/4 + 3/4

☛ 4/4

☛ 1

Therefore, Value of SIN A COS C + COS A SIN C is 1.

Attachments:

Anonymous: Thanks!
Anonymous: MARK THIS BRAINLIEST! such a great answer bro
TashuBhardwaj: Great
Anonymous: Thank You !
abhibuddie: hey thankx for ur fab answer ..
vishu4753: hi
Anonymous: Thank You !
vishu4753: hi
abhibuddie: hello guys ..watsupp
karan511671: hii
Similar questions