IN TRAINGLE ABC ,RIGHT ANGLED AT B ,IF TAN A =1 /ROOT3,FIND THE VALUE OF
I)SIN A COS C + COS A SIN C .
PLEASE ANSWER ME FRENDS ...............^ . ^
Answers
a=30°
c=60°
sinA cosC +cosA sinC
=sin( A+C)
=sin=90
=1
✽✽✽✽✽✽✽
ɦσρε เƭ ɦεℓρร ყσµ
✽✽✽✽✽✽✽
Solution:
It is given that In triangle ABC,Right-angled at B if tan A =1/√3.
•°• We have right-angled Triangle ABC in which tan A = 1/√3
☛ { From Given Attachment } ☛
Given, tan A = 1/√3 = BC/AB
________________________________
Let Side BC measure be k .
So, Side AB measure = √3k
•°• Using Pythagoras theorem , We have
By Pythagoras theorem, In ∆ABC ;
☛ H² = P² + B²
☛ Ac² = AB² + BC²
☛ AC² = (√3k)² + (k)²
☛ AC² = 3k² + k²
☛ AC² = 4k²
•°• ☛ AC = 2k
Now, on comparing Values of Trigonometric Ratio, We have ;
(I) Sin A = BC/AC =k/2k = ½
(ii) Cos C = BC/AC =k/2k = ½
(III) CoS A = AB/AC = √3k/2k = √3/2
(Iv) Sin A = AB/AC = √3k/2k =√3/2
Now, We have to find the value of ;i)SIN A COS C + COS A SIN C .
☛ ½ * ½ + √3/2 *√3/2
☛ 1/4 + 3/4
☛ 4/4
☛ 1
Therefore, Value of SIN A COS C + COS A SIN C is 1.