In trapezium ABCD, AB||CD, DC=2AB. EF||AB cuts AD in F and BC in E. {BE}/{EC}={4}/{3} . DB intersects EF at G .PROVE THAT 7EF=11AB
Answers
Answered by
5
Answer:
Step-by-step explanation:
Attachments:
Answered by
2
(i)
In ΔDFG and ΔDAB, we have
⇒ ∠FDG = ∠ADB
∴ ΔDFG ~ ΔDAB
⇒ (DF/DA) = (FG/AB)
(ii)
In trapezium ABCD, EF ║ AB ║ DC
⇒ (AF/DF) = (BE/EC)
⇒ (AF/DF) = 4/3
⇒ (AF/DF) + 1 = 4/3 + 1
⇒ (AF + DF)/DF = 7/3
⇒ AD/DF = 7/3
⇒ DF/AD = 3/7
(iii)
From (i) & (ii), we have
⇒ FG/AB = 3/7
⇒ FG = (3/7) AB
(iv)
From ΔBEG and ΔBCD, we have
⇒ ∠BEG = ∠BCD
∴ ΔBEG ~ ΔBCD
⇒ (BE/BC) = EG/CD
⇒ 4/7 = EG/CD
⇒ EG = (4/7) CD
⇒ EG = (4/7) * 2AB
⇒ EG = (8/7) AB
On solving (iii) & (iv), we get
⇒ FG + EG = (3/7) AB + (8/7) AB
⇒ EF = (11/7)AB
⇒
Hope it helps!
Attachments:
Similar questions