In tri PQR, right angled at Q ,PR+QR=25cm &PQ=5cm determine value of sinP,cosP
& tanP
Answers
In ∆PQR, angle d at Q
PR + PQ = 25cm
PQ = 5 cm
★Assumption
QR = p cm
PR = (25 - p)
RP² = RQ² + QP²
(25 - p)² = p² + 5²
★Identity - (a - b)² = a² - 2ab + b²
625 - 50p + p² = p² + 25
-50p = -600
p = 12
RQ = 12 cm
RP = (25 - 12)
RP = 13 cm
★Hence
Answer:
Heya mate :)
First you have to solve for QR and PR.
PR+QR = 25 (given) and PR=25-QR
52 + QR2= PR2 (pythagorean theorem)
Then substitute PR to get this equation = 52 + QR2 = (25-QR)2
Solve for QR
52 + QR2 = 625 - 50QR +QR2 .........(QR2 cancels out)
52 = 625 - 50 QR
-600 = -50 QR
QR= 12
Solve for PR using original equation.
PR= 13
Now draw the triangle on your paper for help solving the next step...
Sin = opposite/ hypotenuse Sin(P)= 12/13
Cos= Adjacent/ hypotenuse Cos(P) = 5/13
Tan= opposite/ adjacent Tan(P) = 12/5