In triange pqr right angled at Q,PQ=3 cm PR=6 find sin r
Answers
Answer:
The measurement of angle PRQ = 30°
And, The measurement of angle QPR = 60°
Step-by-step explanation:
Here, PQR is a right triangle,
In which m∠Q = 90°, PQ = 3 cm and PR = 6 cm,
By the law of sine,
\frac{sinR}{PQ}=\frac{sinQ}{PR}
PQ
sinR
=
PR
sinQ
\implies \frac{sinR}{3}=\frac{sin90^{\circ}}{6}⟹
3
sinR
=
6
sin90
∘
\implies sin R = 3\times \frac{sin90^{\circ}}{6}⟹sinR=3×
6
sin90
∘
sin R = \frac{3}{6}=\frac{1}{2}sinR=
6
3
=
2
1
\implies \angle R = 30^{\circ}⟹∠R=30
∘
⇒ \implies \angle PRQ = 30^{\circ}⟹∠PRQ=30
∘
By the property of a triangle,
\angle P+\angle Q+\angle R = 180^{\circ}∠P+∠Q+∠R=180
∘
\implies \angle P + 90^{\circ}+30^{\circ}=180^{\circ}⟹∠P+90
∘
+30
∘
=180
∘
\implies \angle P = 180^{\circ}-120^{\circ}=60^{\circ}⟹∠P=180
∘
−120
∘
=60
∘
\implies \angle QPR = 60^{\circ}⟹∠QPR=60
∘