In triangl ABC, angle A =x+18 , angle B =2(x-12) angle C = 3x/2 - 3 . Find each angle of the triangle and hence show that it is an equilateral triangle.
Answers
Answered by
1
Answer:
Answer: since all angles A, B, C are equal to 60 degree, the triangle is equilateral.
Step-by-step explanation: 180 = sum of all angles of the triangle sum = angle A + angle B + angle C 180 = (x + 18) + - 24) + 3[x/2 -1] 180 = X + 18 + - 24 + - 3 180 = X + + + 18 - 24 - 3
180
180
180/9= 1
20
+ 1 =
= x
x = 42
angle A = x + 18 angle B = - 24 angle C = 3[x/2 -1]
= 42+18 = (2*42) - 24
= 3[42/2 - 1]
= 60 84 — 24
= 3[21 - 1]
= 60
= 20
= 60
Step-by-step explanation:
please make my answer as brainest answer
Answered by
0
Equilateral triangle has equal angles which is 60. Therefore, it is equal to 180 degrees.
Add the angles: A + B + C
(x + 18) + 2(x - 12) + [(3/2)x - 3] = 180
x + 18 + 2x - 24 + 3x/2 - 3 = 180
x + 2x + 3x/2 = 180 - 18 + 24 + 3
x + 2x + 3x/2 = 189
2[x + 2x + 3x/2 = 189]
2x + 4x + 3x = 378
9x = 378
x = 42
Substituting the value of x
x + 18 = 42 + 18 = 60 degrees
2x - 24 = 2(42) - 24 = 60 degrees
3x/2 - 3 = 3(42)/2 - 3 = 60 degrees
Add the angles: A + B + C
(x + 18) + 2(x - 12) + [(3/2)x - 3] = 180
x + 18 + 2x - 24 + 3x/2 - 3 = 180
x + 2x + 3x/2 = 180 - 18 + 24 + 3
x + 2x + 3x/2 = 189
2[x + 2x + 3x/2 = 189]
2x + 4x + 3x = 378
9x = 378
x = 42
Substituting the value of x
x + 18 = 42 + 18 = 60 degrees
2x - 24 = 2(42) - 24 = 60 degrees
3x/2 - 3 = 3(42)/2 - 3 = 60 degrees
Similar questions