in triangle A + B + C = π show that sin2A+sin2B+sin2C=2sinA sinB cosC
Answers
Answered by
3
Proof :
L.H.S. = sin2A + sin2B + sin2C
= 2 sin{(2A + 2B)/2} cos{(2A - 2B)/2} + sin2C
= 2 sin(A + B) cos(A - B) + sin2C
= 2 sin(π - C) cos(A - B) + sin2C,
since A + B + C = π
= 2 sinC cos(A - B) + sin2C
= 2 sinC cos(A - B) + 2 sinC cosC,
since sin2A = 2 sinA cosA
= 2 sinC {cos(A - B) + cosC}
= 2 sinC [2 cos{(A - B + C)/2} cos{(A - B - C)/2}]
= 4 sinC cos{(π - 2B)/2} cos{(π - 2A)/2},
since A + B + C = π & cos(- A) = cosA
= 4 sinC cos(π/2 - B) cos(π/2 - A)
= 4 sinC sinB sinA
= 4 sinA sinB sinC
= R.H.S.
Hence, proved.
Similar questions