Math, asked by poojanagare1078, 1 year ago

In triangle abc,3cosa+4sinb=1 and 3sina+4cosb=6.Then the measure of angle c can be

Answers

Answered by sprao534
4

Please see the attachment

Attachments:
Answered by mysticd
4

 In \: triangle \: ABC,

 i ) 3CosA + 4SinB = 1 \:(given)

/* On squaring both sides , we get */

 \implies (3CosA + 4SinB)^{2} = 1^{2}

 \implies (3CosA)^{2} + (4SinB)^{2} + 2\times (3CosA )\times (4SinB ) = 1

 \implies 9Cos^{2}A + 16Sin^{2}B +24CosA sinB ) = 1 \: --(1)

 ii ) 3Sin A + 4Cos B = 1 \:(given)

/* On squaring both sides , we get */

 \implies (3SinA + 4CosB)^{2} = 6^{2}

 \implies (3SinA)^{2} + (4CosB)^{2} + 2\times (3SinA )\times (4Cos B ) = 36

 \implies 9Sin^{2}A + 16Cos^{2}B +24SinA CosB ) = 36 \: --(2)

/* Adding equations (1) and (2) , we get */

 9(Cos^{2}A+Sin^{2}A)+16(Sin^{2}B+Cos^{2} A) +24(SinBCosA+SinACosB) = 37

 \implies 9 + 16 + 24Sin(B+A) = 37

 \implies 25+ 24Sin(B+A) = 37

 \implies 24Sin(B+A) = 37 - 25

 \implies 24Sin(B+A) = 12

 \implies Sin(B+A) = \frac{12}{24}

 \implies Sin(B+A) = \frac{1}{2}

 \implies Sin(B+A) = Sin 30\degree

 \implies A + B = 30\degree \: --(3)

 But \: A + B + C = 180\degree \: --(4)

 \blue {( Angle \:sum \: Property )}

/* Subtract equation (3) from Equation (4) , we get */

 \angle C = 150\degree

Therefore.,

 \red { Measure \:of \: \angle C } \green {= 150\degree}

•••♪

Similar questions