Math, asked by muskanpriyadarsini7, 5 months ago

in triangle ABC , A = a²-(b²-c²) then tanA =?​

Answers

Answered by gowthamanimella
1

Step-by-step explanation:

ANSWER

Given,

Δ=a

2

−(b−c)

2

Now as we know that s=

2

a+b+c

or, a=2s−(b+c)

putting this value of a in Δ=a

2

−(b+c)

2

, we get

Δ=[2s−(b+c)]

2

−(b−c)

2

Δ=[4s

2

+(b+c)

2

−4s(b+c)]−(b−c)

2

Δ=4s

2

−4s(b+c)+[(b+c)

2

−(b−c)

2

]

Δ=4s

2

−4s(b+c)+4bc

Δ=4s

2

−4sb−4sc+4bc

Δ=4s(s−b)−4c(s−b)

Δ=(4s−4c)(s−b)

Δ=4(s−c)(s−b)

4

1

=

Δ

(s−c)(s−b)

...............1

Now as we know that tan

2

A

=

s(s−a)

(s−b)(s−c)

(s−b)(s−c)

=tan

2

A

s(s−a)

multiply both side by

(s−b)(s−c)

(s−b)(s−c)= tan

2

A

s(s−a)(s−b)(s−c)

(s−b)(s−c)= tan

2

A

Δ

Δ

(s−b)(s−c)

= tan

2

A

................2

by using 1 and 2

4

1

= tan

2

A

tanA=

1−tan

2

2

A

2tan

2

A

=

1−(

4

1

)

2

2(

4

1

)

=

15

8

Answered by Anonymous
1

ANSWER

Given,

Δ=a² −(b−c)²

Now as we know that s= a+b+c/2

or, a=2s−(b+c)

putting this value of a in Δ=a²−(b+c) ², we get

Δ=[2s−(b+c)] ²−(b−c)²

Δ=[4s² +(b+c) ²−4s(b+c)]−(b−c)²

Δ=4s²−4s(b+c)+[(b+c)²−(b−c)²]

Δ=4s²−4sb−4sc+4bc

Δ=4s(s−b)−4c(s−b)

Δ=(4s−4c)(s−b)

Δ=4(s−c)(s−b)

Now as we know that tan A/2

=✓(s−b)(s−c)/s(s-a)

✓(s-b)(s-c)=tan A/2​✓s(s−a)

multiply both side by ✓(s−b)(s−c)

(s−b)(s−c)= tan A/2 Δ

(s−b)(s−c)/∆= tan A/2................2

by using 1 and 2 =1/4 = tan A/2

8/15​

Similar questions