Math, asked by Talha46, 11 months ago

in triangle ABC a–b=15 & b–c=30 find a b& c​

Answers

Answered by BrainlyConqueror0901
13

》Right Question :

[Q]In triangle ABC /_A - /_B=15° & /_B - /_C=30°.Find /_A,/_B and /_C.

Answer:

\huge{\pink{\green{\sf{\therefore \angle A=80\degree}}}}

\huge{\pink{\green{\sf{\therefore \angle B=65\degree}}}}

\huge{\pink{\green{\sf{\therefore \angle C=25\degree}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

• In question we have information and having three unknown and three eqn .

• According to given question :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\orange{ \underline{given}}} \\ { \green{ \angle A +\angle B +\angle C= 180 \degree}} \\ { \green{ \angle A  - \angle B  = 15\degree}} \\ { \green{ \angle B - \angle C = 30\degree}} \\  \\ { \red{ \underline{to \: find : }}} \\ { \purple{ \angle A=? }} \\ { \purple{ \angle B=? }} \\ { \purple{ \angle C =? }}

 \to \angle A +\angle B  +\angle C = 180 \degree -  -  -  -  - (1) \\  \to \angle A - \angle B= 15 \degree -  -  -  -  - (2) \\ \to \angle B - \angle C = 30 \degree -  -  -  -  - (3) \\   \\ adding \: (1) \: and \: (3) \\  \to \angle A +\angle B+\angle C +\angle B  - \angle C  = 180 \degree + 30 \degree \\  \to  \angle A +  2\angle B= 210 \degree -  -  -  -  - (4) \\  \\ subtracting \: (2) \: from \: (1) \\  \to  \angle A +  2\angle B -  \angle B +   \angle B = 210 \degree- 15 \degree \\  \to 3 \angle B= 195  \degree \\  { \green{\therefore  \angle B = 65  \degree}} \\  \\ putting \: value \: of \angle B  \: in \: (2) \\  \to  \angle A -  \angle B = 15 \degree \\  \to \angle A  - 65 \degree = 15 \degree  \\ \to  \angle A = 15 \degree + 65 \degree \\  { \green{\therefore \angle A = 80  \degree}} \\  \\ putting \: value \: of \angle B \: in \: (3) \\  \to \angle B- \angle C= 30 \degree \\  \to 65 \degree - \angle C = 30 \degree \\  \to- \angle C = 30  \degree - 65 \degree \\ \to - \angle C =  - 35 \degree \\  { \green{\therefore \angle C = 35 \degree}}

Similar questions