Math, asked by Rudi1903, 2 months ago

In triangle ABC, AB = 2x cm, AC = x cm, BC = 21 cm and angle BAC = 120°.
Calculate the value of x.

Answers

Answered by mehakshakya34
20

Step-by-step explanation:

plz mark me brainlist

Attachments:
Answered by Abhijeet1589
4

The value of x is √63cm

GIVEN

ABC is a triangle.

AB = 2x cm

AC = x cm

BC = 21 cm

∠BAC = 120°

TO FIND

The value of x

SOLUTION

We can simply solve the above problem as follows;

In ΔABC

AB = a = 2x cm

AC = b = x cm

BC = c = 21 cm

∠BAC = 120°

Applying the cosine theorem in ΔABC

 \cos(a)  =  \frac{ {b}^{2}  +  {c}^{2} -  {a}^{2}  }{2bc}

Putting the values in the above formula we get;

 \cos(120)  =   \frac{ {x}^{2}  +  {2x}^{2}  -  {21}^{2} }{2x \times 2x}

Putting the value of Cos 120 is -1/2

 -  \frac{1}{2}  =  \frac{5 {x}^{2} - 441 }{ {4x}^{2} }

-4x² = 10x² - 882

14x² = 882

x² = 882/14 = 63

x = √63

Hence, The value of x is √63cm

#Spj2

Similar questions