In triangle ABC, AB=5cm, BC=12cm,<B=90°
a)find SinA, CosA, tanA
b) Prove that Sin^2A+Cos^2A=,1
Answers
Given :
- AB = 5 cm
- BC = 12 cm
- angle(B) = 90°
To find :
a) sinA , cosA , tanA
b) Prove , sin²A + cos²A = 1
Image :
{ App user refer to attachment for same }
Solution :
First of all we need to find hypoteneus ( AC)
Using Pythagoras theorem,
AC² = AB² + BC²
AC² = (12)² + (5)²
AC² = 144 + 25
AC² = 169
AC = √169
AC = ± 13
{ as side can't be negative }
AC = 13 cm
_______________________________________________
Part a)
sinA = Perpendicular ÷ Hypoteneus
sinA = BC ÷ AC
sinA = 12/13
cosA = Base ÷ hypoteneus
cosA = AB ÷ AC
cosA = 5/13
tanA = Perpendicular ÷ base
tanA = BC ÷ AC
tanA = 12/5
_______________________________________________
Part b)
To prove sin²A + cos²A = 1
LHS ,
RHS = 1
This gives, RHS = LHS ,
HENCE PROVED
Step-by-step explanation:
right angled ∆ ABC,
BY PYTHAGORAS THEORM,
AC² = AB²+ BC²
AC² = 5²+12²
AC²= 25+144
AC²= 169
AC=√169
AC= 13
(a). sin A = P/H
BC/ AC
12/ 13
cosA. B/H
AB/AC
5/ 13
tanA. P/B
BC/AB
12/5
(b). sin²A + cos²A = 1
LHS= ( 12/13)² + (5/13)²
= 144/169+ 25/169
= 169/169
= 1
And RHS = 1
SO LHS= RHS
HENCE PROVED