Math, asked by Prathameh2005, 11 months ago

in triangle ABC, AB=90° ,Angle A.=30°,Angle c=60°,AC=14,find AB​

Answers

Answered by varadad25
4

Answer:

\boxed{\red{\sf\:AB\:=\:7\:\sqrt{3}\:units}}

Step-by-step-explanation:

NOTE: Refer to the attachment for the diagram.

In \sf\:\triangle\:ABC,

\sf\:\angle\:A\:=\:30^{\circ}\\\\\sf\:\angle\:B\:=\:90^{\circ}\\\\\sf\:\angle\:C\:=\:60^{\circ}\:\:\:\:[\:Given\:]

\therefore\sf\:\triangle\:ABC\:is\:a\:30^{\circ}\:-\:60^{\circ}\:-\:90^{\circ}\:triangle.

\therefore By 30^{\circ}\:-\:60^{\circ}\:-\:90^{\circ} triangle theorem,

\sf\:AB\:=\:\frac{\sqrt{3}}{2}\:AC\:\:\:-\:-\:[\:Side\:opposite\:to\:60^{\circ}\:]\\\\\implies\sf\:AB\:=\:\frac{\sqrt{3}}{2}\:\times\:14\\\\\implies\boxed{\red{\sf\:AB\:=\:7\:\sqrt{3}\:units}}

Additional Information:

1. 30^{\circ}\:-\:60^{\circ}\:-\:90^{\circ} triangle theorem:

The theorem by which the sides of a right angled triangle with other two angles of 30^{\circ}\:-\:60^{\circ} respectively, can be calculated is called as 30^{\circ}\:-\:60^{\circ}\:-\:90^{\circ} triangle theorem.

2. Side opposite to 30^{\circ}:

The side opposite to 30^{\circ} is always half of the hypotenuse.

3. Side opposite to 60^{\circ}:

The side opposite to \sf\:60^{\circ} is always \sf\:\frac{\sqrt{3}}{2} of the hypotenuse.

Attachments:
Similar questions