Math, asked by karanyadav0249261, 3 months ago

in triangle ABC, AB= AC= x, BC= 18cm and the area of triangle ABC is 108cm². find x​

Answers

Answered by khanhira5650
0

Answer:

BC= 18CM AND THE AREA OF THE TRIANGLE IS 108CM.

X=194

Answered by mathdude500
5

\large\underline{\sf{Given- }}

  • A triangle ABC,

in which

  • AB = x

  • AC= x

  • BC= 18cm

and

  • The area of triangle ABC is 108cm²

\large\underline{\sf{To\:Find - }}

  • The value of x

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

Heron's Formula : -

Let us consider a triangle whose measurement of sides are a, b, c units respectively, then area of triangle is

\underline{\boxed{\sf Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)} }}

where,

\underline{\boxed{\sf \: s =  Semi \ perimeter=\dfrac{1}{2}(a + b + c)}}

\large\underline{\sf{Solution-}}

Given that,

  • Area of triangle ABC = 108cm²

Let

  • AB = c = x cm

  • AC = b = x cm

  • BC = a = 18 cm

So,

Semi-perimeter of triangle ABC is

\rm :\longmapsto\:s = \dfrac{1}{2} (a + b + c)

\rm :\longmapsto\:s = \dfrac{1}{2} (x + x + 18)

\rm :\longmapsto\:s = \dfrac{1}{2} (2x+ 18)

\rm :\longmapsto\:s \:  =  \: x \:  +  \: 9

Now,

Area of triangle ABC is

{\sf Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)} }

\rm :\longmapsto\:108 =  \sqrt{(9 + x)(9 + x - 18)(9 + x - x)(9 + x - x)}

\rm :\longmapsto\:108 =  \sqrt{(9 + x)(x - 9) \times 9 \times 9}

\rm :\longmapsto\:108 = 9 \sqrt{{x}^{2}  - 81}

\rm :\longmapsto\:12 =  \sqrt{{x}^{2}  - 81}

On squaring both sides, we get

\rm :\longmapsto\:144 = {x}^{2}  - 81

\rm :\longmapsto\: {x}^{2}  = 144 + 81

\rm :\longmapsto\: {x}^{2}  = 225

\bf\implies \:x = 15 \: cm

\large\underline{\sf{ \: Additional \:  Information - }}

 \boxed{ \sf \: Area_{(right \: triangle)} = \dfrac{1}{2}  \times b \times h}

 \boxed{ \sf \: Area_{(equilateral \: triangle)} = \dfrac{ \sqrt{3} }{4}  \times  {a}^{2}}

 \boxed{ \sf \: Area_{(rectangle)} = l \times b}

 \boxed{ \sf \: Area_{(square)} =  {(side)}^{2} }

Similar questions