In triangle ABC, AB >AC. E is the midpoint of BC and AD is perpendicular to BC. Prove that :
AB2 + AC2 = 2AE2 + 2BE2
Answers
Answered by
31
Step-by-step explanation:
please mark me brainlist
Attachments:
Answered by
5
Step-by-step explanation:
triangle ABC
AB>AC E mid-point of BC
AD ⊥ BC
In ΔABD ,by Pythagoras Theorem:
AB²=AD²+BD²
=AD²+(BE+ED)² {BD=BE+ED}
AB²=AD²+BE²+ED²+2BE.ED {1}
In ΔADC ,by Pythagoras Theorem:
AC²=AD²+DC²
=AD²+(CE-ED)² {DC=CE-ED}
AC²=AD²+CE²+ED²-2CE.ED {2}
Add {1} and {2}:
AB²+AC²=2AD²+BE²+CE²+2ED²-2CE.ED+2BE.ED
AB²+AC²=2AD²+BE²+BE²+2ED²-2BE.ED+2BE.ED {BE=CE}
AB²+AC²=2(AD²+ED²) +2BE²
AB²+AC²=2AE² +2BE²
Hope it helps
Similar questions
Hindi,
5 months ago
Biology,
5 months ago
Hindi,
5 months ago
Math,
10 months ago
Social Sciences,
10 months ago
Social Sciences,
1 year ago
Math,
1 year ago
English,
1 year ago