In triangle ABC, AD is a median and E is the midpoint of AD. If BE is produced to meet AC in F, show that AF = 1/3 AC.
Answers
Answered by
14
Given that E is the midpoint of AD.
We have to proove tha5 AF is1/3 AC
By midpoint theorem,
A line passes through a midpoint intersect third side .
We name it as G
AG= GC
AG=1/2AC
Therefore we can say that AF=1/3AC
We have to proove tha5 AF is1/3 AC
By midpoint theorem,
A line passes through a midpoint intersect third side .
We name it as G
AG= GC
AG=1/2AC
Therefore we can say that AF=1/3AC
Astar:
i think your answer seems to be incomplete
Similar questions