Math, asked by niyatee47611, 11 months ago

In triangle ABC , AD is an altitude and angle A is right angle. If AB = root 20,BD =4 then find CD

Answers

Answered by guptasingh4564
5

The value of CD is 1 units

Step-by-step explanation:

Given,

\triangle ABC, AD is an altitude and \angle A is right angle. If AB =\sqrt{20},BD =4

From figure,

\triangle ABD also right triangle,

So,

AD^{2}=AB^{2}-BD^{2}

AD=\sqrt{20-4^{2} }

AD=\sqrt{20-16}

AD=\sqrt{4} =2

Take BC as base.

Area of \triangle ABC=\frac{1}{2}\times BC\times AD

                         =\frac{1}{2}\times BC\times 2=BC

Also, take AB as base.

Area of \triangle ABC=\frac{1}{2}\times AB\times AC

                         =\frac{1}{2}\times \sqrt{20} \times AC

                         =\sqrt{5}AC

∴ Area of same triangle is equal.

BC=\sqrt{5}AC

From \triangle ABC,

BC^{2}=AC^{2}+AB^{2}

5AC^{2} =AC^{2}+AB^{2}

4AC^{2}=20

AC^{2}=5

AC=\sqrt{5}

Then, BC=\sqrt{5}\times \sqrt{5}

BC=5

CD=BC-BD

CD=5-4

CD=1

So, The value of CD is 1 units

Attachments:
Answered by shukladhatri511
0

Answer:

Step-by-step explanation:

Attachments:
Similar questions