In triangle abc ,AD is perpendicular to BC . Ad is called------- of the triangle
Answers
Step-by-step explanation:
It could be bisecter.
hope this answer helps you dear!
Answer:
To prove : BAC = 90°
To prove : BAC = 90°in right triangles ∆ADB and ∆ADC
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be applied
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be appliedThen we have
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be appliedThen we haveAB² = AD² + BD² ———-(1)
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be appliedThen we haveAB² = AD² + BD² ———-(1)AC²= AD²+ DC² ———(2)
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be appliedThen we haveAB² = AD² + BD² ———-(1)AC²= AD²+ DC² ———(2)AB² + AC² = 2AD² + BD²+ DC²
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be appliedThen we haveAB² = AD² + BD² ———-(1)AC²= AD²+ DC² ———(2)AB² + AC² = 2AD² + BD²+ DC²= 2BD . CD + BD² + CD² [ ∵ given AD² = BD.CD ]
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be appliedThen we haveAB² = AD² + BD² ———-(1)AC²= AD²+ DC² ———(2)AB² + AC² = 2AD² + BD²+ DC²= 2BD . CD + BD² + CD² [ ∵ given AD² = BD.CD ]= (BD + CD )² = BC²
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be appliedThen we haveAB² = AD² + BD² ———-(1)AC²= AD²+ DC² ———(2)AB² + AC² = 2AD² + BD²+ DC²= 2BD . CD + BD² + CD² [ ∵ given AD² = BD.CD ]= (BD + CD )² = BC²Thus, in triangle ABC we have , AB² + AC²= BC²
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be appliedThen we haveAB² = AD² + BD² ———-(1)AC²= AD²+ DC² ———(2)AB² + AC² = 2AD² + BD²+ DC²= 2BD . CD + BD² + CD² [ ∵ given AD² = BD.CD ]= (BD + CD )² = BC²Thus, in triangle ABC we have , AB² + AC²= BC²hence, triangle ABC is a right triangle right-angled at A
To prove : BAC = 90°in right triangles ∆ADB and ∆ADCSo, Pythagoras theorem should be appliedThen we haveAB² = AD² + BD² ———-(1)AC²= AD²+ DC² ———(2)AB² + AC² = 2AD² + BD²+ DC²= 2BD . CD + BD² + CD² [ ∵ given AD² = BD.CD ]= (BD + CD )² = BC²Thus, in triangle ABC we have , AB² + AC²= BC²hence, triangle ABC is a right triangle right-angled at A∠ BAC = 90°
PLEASE MARK MY ANSWER AS THE BRILLINEST