Math, asked by savanimoharir, 1 year ago

In triangle abc, ad is perpendicular to bc. Sin B = 0.8, bd = 9cm and tan C = 1. Find the length of ab, ad, ac, and dc

Answers

Answered by Shaizakincsem
39
Sin B = 0.8 

So cos B = √1-cos² B = √1-(0.8)² = √1-0.64 = √0.36 = 0.6

In ΔABD, 

cos B = BD/AB = 0.6 = 9/AB 
AB = 9/0.6 = 15

SO AB = 15 cm 

Sin B = AD/AB
0.8 = AD/15

AD = 12 cm

IN Δ ADC, 

tan C= AD/CD
CD = 12 cm 

and SecC = √1+ tan² C = √1 + 1² = √2

So,
SecC = AC/CD 
= √2 = AC/12
= AC = 12√2 cm 
Answered by seemakumari123444
3

Step-by-step explanation:

In △ABC, AD⊥BC, sinB=0.8, tanC=1, BD=9

In △ABD,

sinB=0.8

cos

2

B=1−sin

2

B=1−(0.8)

2

cosB=(0.6)

2

cosB=0.6

cosB=

AB

BD

AB=

0.6

BD

AB=

0.6

9

=15

Also, using Pythagoras theorem,

AB

2

=AD

2

+BD

2

15

2

=9

2

+AD

2

AD=144

AD=12 cm

Now, In △ACD

tanC=1=

B

P

=

CD

AD

AD=CD=12 cm

Using Pythagoras theorem,

AD

2

+CD

2

=AC

2

12

2

+12

2

=AC

2

AC=12

2

cm

Similar questions