In triangle ABC , AD is the median and DE is parallel to BA .Prove that BE is also a median.
Answers
Answered by
388
Since AD is the median of ΔABC, then BD = DC.
Given, DE || AB and DE is drawn from the mid point of BC i.e.D, then by converse of mid-point theorem,
it bisects the third side which in this case is AC at E.
Therefore, E is the mid point of AC.
Hence, BE is the median of ΔABC.
Given, DE || AB and DE is drawn from the mid point of BC i.e.D, then by converse of mid-point theorem,
it bisects the third side which in this case is AC at E.
Therefore, E is the mid point of AC.
Hence, BE is the median of ΔABC.
Answered by
52
Answer:
e is the midpoint .hope it helps
Attachments:
Similar questions