in triangle ABC, AD perpendicular to BC, DB=3CD.prove that, 2AB^2=2AC^2+BC^2
Answers
Answered by
11
BC= BD+DC= 3CD+DC= 4CD
BC²=(4CD)²=16CD²
In triangle ADC,
AC²=AD²+DC²
AD²= AC²-DC²
In triangle ABD,
AB²=AD²+BD²
AB²=AC²-DC²+(3CD)²
AB²=AC²-DC²+9DC²
AB²=AC²+8CD²
Multiplying both the sides by 2,
2AB²=2AC²+16CD²
2AB²=2AC²+BC²
BC²=(4CD)²=16CD²
In triangle ADC,
AC²=AD²+DC²
AD²= AC²-DC²
In triangle ABD,
AB²=AD²+BD²
AB²=AC²-DC²+(3CD)²
AB²=AC²-DC²+9DC²
AB²=AC²+8CD²
Multiplying both the sides by 2,
2AB²=2AC²+16CD²
2AB²=2AC²+BC²
Attachments:
Answered by
1
Answer:
Since ⊿ADB is a right triangle, we have
AB² = AD² + DB².
And since 2DB =3 CD, we know BC = BD + CD BC = 2/3 DB+DB And DB = (3/5) CB.
(1) AB² = AD² + 9/25 BC2.
Similarly ⊿ADC is a right triangle, so
AC² = AD² + DC²,
So Similarly, DC = BC - BDDC= BC (2/5), and
(2) AC² = AD² + (4/25) BC²,
Subtract (1) by (2)
AB² - AC² = (9 - 4)/25 BC² AB² - AC² = 1/5 BC² 5AB² - 5AC² = BC²
So
5 AB² = 5 AC² + BC².
Step-by-step explanation:
Similar questions