Math, asked by Arpitkale2005, 5 months ago

In triangle ABC, AD perpendicular to BC. Prove that AB² - BD2² = AC²- CD² ?
plz plz answer ​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
12

Answer:

\setlength{\unitlength}{1cm}\begin{picture}(20,15)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(0,0)(0,0)(2,3)\qbezier(2,3)(2,3)(2,0)\qbezier(4,0)(4,0)(2,3)\put(-0.2,-0.5){\sf B}\put(4.1,-0.5){\sf C}\put(1.9,3.3){\sf A}\put( 1.9,-0.5){\sf D}\put(2,0){\dashbox{0.01}(0.3,0.3)}\end{picture}

  • There is a ∆ABC with AD as the perpendicular
  • AB²-BD² = AC²-CD²

\displaystyle\underline{\bigstar\:\textsf{According to the given Question :}}

  • We shall use the Pythagoras theorem on both the triangles and then equate the equations we get from that to prove the given statement!!

In ∆ADC

\displaystyle\sf :\implies AC^2 = AD^2+CD^2 \\\\

\displaystyle\sf :\implies AC^2-CD^2 = AD^2\:\: -eq(1)

In ADB

\displaystyle\sf :\implies AB^2 = AD^2+BD^2\\\\

\displaystyle\sf :\implies AB^2-BD^2 = AD^2\:\: -eq(2)

\displaystyle\underline{\bigstar\:\textsf{From 1 \& 2 :}}

  • AD² = AC² - CD²
  • AD² = AB² - BD²

\displaystyle\sf \dashrightarrow AC^2-CD^2 = AB^2 - BD^2\\\\

\displaystyle\sf \dashrightarrow\underline{\boxed{\sf AB^2-BD^2 = AC^2-CD^2}}

\displaystyle\underline{\textsf{\textbf{Hence Proved!!}}}

Answered by AKStark
1

Answer:

Hope it helps mate.....

Attachments:
Similar questions