In triangle ABC, Ad perpendicular to BC. prove that AC²= AB²+BC²-2BCBD
Answers
In the right angle triangle ABD, we have
AD² = AB² - BD²
In the right angle triangle ACD we have
AD² = AC² - CD²
So AC² - CD² = AB² - BD²
=> AC² = AB² + CD² - BD²
=> = AB² + (CD + BD)* (CD - BD )
= AB² + BC * [(BC - BD) - BD]
= AB² + BC * [ BC - 2 BD ]
= AB² +BC² - 2 BC * BD
Hope it helps
Plz mark as brainliest
In the right angle triangle ABD, we have
AD² = AB² - BD²
In the right angle triangle ACD we have
AD² = AC² - CD²
So AC² - CD² = AB² - BD²
=> AC² = AB² + CD² - BD²
=> = AB² + (CD + BD)* (CD - BD )
= AB² + BC * [(BC - BD) - BD]
= AB² + BC * [ BC - 2 BD ]
= AB² +BC² - 2 BC * BD