Math, asked by numa30, 1 year ago

In triangle ABC, Ad perpendicular to BC. prove that AC²= AB²+BC²-2BCBD​

Attachments:

Answers

Answered by adityajuneja77
5

In the right angle triangle ABD, we have

         AD² = AB² - BD²

In the right angle triangle  ACD we have

        AD² = AC² - CD²

So    AC² - CD²  = AB² - BD²

        =>  AC² = AB² + CD²  -  BD²

        =>         = AB² + (CD + BD)* (CD - BD )

                     = AB² + BC * [(BC - BD) - BD]

                     = AB² + BC * [ BC - 2 BD ]

                       = AB² +BC² - 2 BC * BD

Hope it helps

Plz mark as brainliest

Answered by sakshi7860
2

In the right angle triangle ABD, we have

         AD² = AB² - BD²

In the right angle triangle  ACD we have

        AD² = AC² - CD²

So    AC² - CD²  = AB² - BD²

        =>  AC² = AB² + CD²  -  BD²

        =>         = AB² + (CD + BD)* (CD - BD )

                     = AB² + BC * [(BC - BD) - BD]

                     = AB² + BC * [ BC - 2 BD ]

                       = AB² +BC² - 2 BC * BD

Similar questions