in triangle ABC AD PERPENDICULAR TO CB AC=29 UNITS DC=21 UNITS AND AB=40 UNITS FIND THE VALUE OF cos^B-sin^2B
Answers
Answered by
5
Answer:
In triangle ADC ,
ADC=90
Ac2=dc2+ad2
Ad2=(29)2 -(21)2=841-441=400
Ad=20
In triangle adb
Ab2=ad2+bd2
Bd2= ab2-ad2=(40)2-(20)2=1600-400=1200
Bd=√1200
Cosb=bd/ab=√1200/40=20√3/40=√3/2
Sinb=ad/ab=20/40=1/2
Lhs=(cosb)2-(sinb)2
= (√3/2)2-(1/2)2=3/4-1/4=2/4=1/2
Value is 1/2.
ezaetdestroyer:
thanks
Answered by
0
Answer:
Step-by-step explanation:
1/2 is the answer. Since
CosB=20√3/40
CosB=√3/2
Thus, CosB=Cos30°
Cos^2B-Sin^2B
(√3/2)^2-(1/2)^2
1/2
Similar questions