Math, asked by rizwanatabasuum3715, 9 months ago

In triangle ABC, angle A = 90°. lf cosB = 40/41, find sinB and tanB

Answers

Answered by Anonymous
1

\bf{\underline{\red{\bf{Given\::}}}}

★ In triangle ABC, angle A = 90°

\cos{B} = \dfrac{40}{41}

\bf{\underline{\red{\bf{To \: find\::}}}}

★ sinB = ?

★ tanB = ?

\bf{\underline{\red{\bf{Solution\::}}}}

\implies\sf\cos{B} = \dfrac{40}{41} = \sf \dfrac{B}{H}

• Base of ∆ :- 40 units

• Hypotenuse of ∆ :- 41 units

Now, Using Pythagoras theorem:-

  • \sf (H)^2 = (B)^2 + (P)^2

  • \sf (41)^2 = (40)^2 + (P)^2

  • \sf 1681 = 1600 + (P)^2

  • \sf (P)^2 = 1681 - 1600

  • \sf (P)^2 = 81

  • \sf \sqrt{(P^2)} = \sqrt{81}

  • \sf \cancel{\sqrt{P^2}}= 81

  • \sf P = 81 units

Now,

• Perpendicular of ∆ = 81 units

Therefore,

\implies\sf\sin{B} = \dfrac{P}{H} = \dfrac{81}{41}

\implies\sf\tan{B} = \dfrac{P}{B} = \dfrac{81}{40}

________________________________


Anonymous: Great
Anonymous: Awesome
Answered by Anonymous
3

 \red{\bold{\underline{\underline{Given}}}}

In ∆ ABC , ∠A =90°

cosB =  \frac{40}{41}

 \orange{\bold{\underline{\underline{To Find:-}}}}

CosB =?

TanB =?

 \red{\bold{\underline{\underline{Step \:by\: step\:explanation:-}}}}

 \implies \: cosB =   \frac{B}{H} =  \frac{40}{41}

Here,

Base of triangle (∆) = 40unit

Hypotenuse of triangle(∆) = 41 unit

\color{plum} {\tt {\bigstar}} \ \displaystyle {\tt{Now \: using \: Pythagoras\: theorem\: we \: get, }}

\sf \implies \: {H}^{2}   =   {B}^{2}  +  {P}^{2}

 \implies \: {41}^{2} =   {40}^{2} +  {P}^{2}

\implies \: 1681 = 1600  + {P}^{2}

\implies \:  {P}^{2}  = 81

\implies \:  \sqrt{ {P}^{2} }  =  \sqrt{81}

\implies \: { {P}^{2} } = 81

\implies \: P = 81units

 \pink{\bold{\underline{\underline{Now\: perpendicular \:of\:triangle\: = 81 units}}}}

\bf\therefore \: sinB =  \frac{P}{H}  =  \frac{81}{41}

\bf\therefore \: tanB =  \frac{P}{B} =   \frac{81}{40}

\green{\tt{\underline{\underline{Be Brainly}}}}

Similar questions