Math, asked by sureshbhagyangs, 11 months ago

In triangle abc angle abc = 90 degree and angle acb = 30 degree then find AB : AC

Answers

Answered by MaheswariS
42

Answer:

\bf\;AB:AC=1:2

Step-by-step explanation:

\textbf{Concept:}

\textbf{Sine formula}:

\displaystyle\text{ In $\triangle{ABC}$, }\\\\\bf\frac{a}{sin\;A}=\frac{b}{sin\;B}=\frac{c}{sin\;C}=2R

\text{Using sine formula, we get}

\frac{BC}{sin\;60}=\frac{AC}{sin\;90}=\frac{AB}{sin\;30}=2R

\frac{BC}{\frac{\sqrt3}{2}}=\frac{AC}{1}=\frac{AB}{\frac{1}{2}}=2R

\frac{2BC}{\sqrt3}=AC=2AB=2R

\implies\;AB=R\;\;and\;\;AC=2R

\frac{AB}{AC}=\frac{R}{2R}

\frac{AB}{AC}=\frac{1}{2}

\implies\bf\;AB:AC=1:2

Answered by Anonymous
10

GIVEN : (IN ABC)

  • Angle ABC = 90°
  • Angle ACB = 30°

TO FIND :

  • AB : AC = ?

STEP - BY - STEP EXPLANATION :

NOTE »

(REFERS TO THE ATTACHMENT)

Attachments:
Similar questions