In triangle abc, angle abc=90°,ab=2a+1,bc=2a^2+2a.find ac in terms of A
Answers
S O L U T I O N :
In Δ ABC,we have :
- AB = 2a + 1
- BC = 2a² + 2a
- ABC = 90°
Attachment a figure of right angled Δ according to the given question.
Now,
⇒ (hypotenuse)² = (Base)² + (Perpendicular)²
⇒ (AC)² = (BC)² + (AB)²
⇒ (AC)² = (2a² + 2a )² + (2a + 1)²
⇒ (AC)² = (2a²)² + (2a)² + 2 × 2a² × 2a + (2a)² + (1)² + 2 × 2a × 1
⇒ (AC)² = 4a⁴ + 4a² + 8a³ + 2a² + 1 + 4a
⇒ (AC)² = 4a⁴ + 8a³ + 6a² + 4a + 1
⇒ AC = √4a⁴ + 8a³ + 6a² + 4a + 1
Thus,
The value of AC in terms of A = √4a⁴ + 8a³ + 6a² + 4a + 1 .
Given
In triangle abc, angle abc=90°,ab=2a+1,bc=2a^2+2a.
We Find
AC in terms of A
We Know that
by according to question, we using Pythagoras theorem.
According to the question
⇒ (hypotenuse)² = (Base)² + (Perpendicular)²
⇒ (AC)² = (BC)² + (AB)²
⇒ (AC)² = (2a² + 2a )² + (2a + 1)²
⇒ (AC)² = (2a²)² + (2a)² + 2 × 2a² × 2a + (2a)² + (1)² + 2 × 2a × 1
⇒ (AC)² = 4a⁴ + 4a² + 8a³ + 2a² + 1 + 4a
⇒ (AC)² = 4a⁴ + 8a³ + 6a² + 4a + 1
⇒ AC = √4a⁴ + 8a³ + 6a² + 4a + 1
So,
The value of AC in terms of A = √4a⁴ + 8a³ + 6a² + 4a + 1 .