In triangle abc,angle acb=90 and cd perpendicular to ab, prove that cd 2 =bd*ad
Answers
Answered by
347
To prove CD² = BD × AD
In Δ CAD, CA² = CD² + AD² .... (1)
Also in Δ CDB, CB² = CD² + BD² .... (2)
(1) + (2) we get
CA² + CB² = 2CD² + AD² + BD²
AB² = 2CD² + AD² + BD²
AB² - AD² = BD² + 2CD²
(AB + AD)(AB - AD) - BD² = 2CD²
(AB + AD)BD - BD² = 2CD²
BD(AB + AD - BD) = 2CD²
BD(AD + AD) = 2CD²
BD × 2AD = 2CD²
CD² = BD × AD
Hence proved.
In Δ CAD, CA² = CD² + AD² .... (1)
Also in Δ CDB, CB² = CD² + BD² .... (2)
(1) + (2) we get
CA² + CB² = 2CD² + AD² + BD²
AB² = 2CD² + AD² + BD²
AB² - AD² = BD² + 2CD²
(AB + AD)(AB - AD) - BD² = 2CD²
(AB + AD)BD - BD² = 2CD²
BD(AB + AD - BD) = 2CD²
BD(AD + AD) = 2CD²
BD × 2AD = 2CD²
CD² = BD × AD
Hence proved.
Attachments:
Answered by
95
Answer:
Step-by-step explanation:
On triangleABC and triangleACD
∠ACB = ∠CDA,
∠CDA = CAB
ΔABC and ΔACD
AC/AB=AD/AC
AC²= AB×AD
similarly ΔBCD and ΔBAC
BC/BA = BD/BC
BC²= BA×BD
∴ ÷ BC² and AC² we get
BC²/AC²=AB×BD/AB×AD
∴ BC²/AC² =BD/AD
Similar questions