Math, asked by sjmankar1, 3 months ago

in triangle ABC angle at B AB=24, BC=7 determine cos A​

Answers

Answered by Anonymous
2

Step-by-step explanation:

 \bf {\blue{ \underline{Question : }}}

 \\  \\  \\

In triangle ABC angle at B AB=24, BC=7 determine cos A

 \\  \\  \\

 \huge{ \boxed{ \bold{ {Given}}}}

 \\  \\

 \\

  • AB = 24

 \\

  • BC = 7

 \\  \\  \\

 \boxed{  \huge{ \bold{to \: find}}}

 \\

  • CosA = ?

 \\  \\

 \\  \\

 \pink{ \underline{ \underline{Solution : -  }}}

 \\  \\

Using Pythagorean theorem,

 \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{AB² + BC² = AC²}

 \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{   {(24)}^{2}  +  {(7)}^{2}  =  {AC}^{2}}}}

 \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{   576 \: +  49=  {AC}^{2} }}}

 \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{   625=  {AC}^{2} }}}

 \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{   \sqrt{625}  =  {AC }}}}

 \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{ \red   {25}=  AC }}}

 \\

________________

 \:  \:  \:  \:  \:  \:  \:  \:  \:   Cos(A) =  \frac{AB }{ AC}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:    \implies Cos(A) =   \frac \red{24} \red{ 25}

 \\

=================================================

Similar questions