Math, asked by kondetisyamala17, 10 months ago

in triangle ABC,angle B=90 degree bd is perpendicular to ac if ab =8 cm and bd=4cm what is the length of cd​

Answers

Answered by mddilshad11ab
102

\sf\large{Correct\: Question}

In triangle ABD,angle B=90° if AB =8 cm and BD=4cm what is the length of AD

\sf\large{Given:}

\sf{in\triangle\:ABD\: \angle\:B=90\degree}

  • \sf{BD\:is\: perpendicular}
  • \sf{AB=8cm\:\:and\:BD=4cm}

\sf\large{Let:}

  • \sf{AB\:is\:base}
  • \sf{BD\:is\: perpendicular}
  • \sf{AD\:is\: hypotenous}

\sf\large{To\: Find:}

  • \sf{The\: length\:of\:AD}

\rm{According\:to\:the\: Pythagoras\: theorem}

\rm{\implies P^2+b^2=h^2}

\rm{\implies AD^2=BD^2+AB^2}

\rm{\implies AD^2=4^2+8^2}

\rm{\implies AD^2=16+64}

\rm{\implies AD^2=80}

\rm{\implies AD=\sqrt{16*5}}

\rm\green{\implies AD=4\sqrt{5}}

Hence,

\sf\purple{\implies The\: length\:of\:AD=4\sqrt{5}cm}

\sf\large{Verification:}

\rm{\implies (4\sqrt{5})^2=4^2+8^2}

\rm{\implies 16\sqrt{25}=16+64}

\rm{\implies 16*5=16+64}

\rm\purple{\implies 80=80}

\sf\large\orange{\implies Hence, Verified}

Attachments:
Answered by AnIntrovert
20

Answer:

Given:

∠ABC=90∘

BD is perpendicular to AC,

BD=8 and AD=4, according to the diagram.

Step by step explanation:

Let ∠ACB=x,⇒∠CBD=90−x

⇒∠ABD=x,⇒∠BAD=90−x

⇒ΔABC, ΔADB and ΔBDC are similar

⇒BD/CD=AD/DB

⇒8/CD=4/8

⇒CD=(8×8)/4

⇒CD=16

Conclusion:

The length of side CD is 16 cm.

Similar questions