Math, asked by saniya2516, 10 months ago

In triangle ABC, angle B=90°,BD perpendicular AC. AD=x,CD=y,BC=a,AB=c. Prove: 1/xy=1/c^2+ 1/a^2​

Answers

Answered by NirmalPandya
3

Given;

  • In Δ ABC, ∠B=90°.
  • Seg BD ⊥ Hypotenuse AC
  • Seg AD= x ; Seg CD= y ; Side BC= a; Side AB=c.

To prove;

  • \frac{1}{xy}  = \frac{1}{c^2}  + \frac{1}{a^2}  

Solution;

  • ΔABC is right angled where ∠B= 90°.
  • AC²= AB² + BC²....(1)  Using Pythagorus theorem
  • We can find the area of triangle with two methods since we have two heights i.e BD & AB.
  • A(ΔABC) = 1/2 × BD× AC = 1/2 ×AB× BC .... (ii)
  • Substitute given values in above equation, we get
  • 1/2 × BD × AC= 1/2 × a × c
  • ∴ BD × AC = a × c
  • On squaring, BD² × AC² = a² × c²... (iii)
  • By property of geometric mean, BD²= AD × CD.
  • BD²= x × y .... (iv)
  • By property of collinearity, AC= x + y ...(v)
  • From (iv) and (v) , eqn (iii) becomes
  • (xy) × (x+y)² = a² × c².
  • From (v) and (i),
  • (x+y)² = a² + c²
  • ∴ xy × (a² + c²) = a² × c².
  • On taking inverse,
  • 1/xy = (a² + c²) / a² × c²
  • 1/xy= a²/a²c² + c²/a²c²   .......(Splitting numerator)
  • 1/xy = 1/c² + 1/a².
  • Hence, proved.

Answer;

1/xy = 1/c² + 1/a²

Similar questions