Math, asked by sharmaprabha158, 9 months ago

in triangle ABC,angle b is 90 degree.If sinA =3/4,then show that cos A +sin C =√7/2​

Answers

Answered by atulrajput75
9

Step-by-step explanation:

this is your answer please check this and please follow me

and please rate me 5 star

Attachments:
Answered by AnkitaSahni
0

cos A + sin C = √7/2

Given :

Angle B = 90°

sin A = 3/4

To prove :

cos A + sin C = √7/2

Solution :

We know;

sine = opposite side / hypotenuse

cosine = adjacent side / hypotenuse

In the mentioned right-angled triangle ABC, since angle B = 90°,

AC is the hypotenuse(side opposite to angle B)

It is given that  sin A = 3/4

                  ⇒ sin A = side opposite to angle A / hypotenuse

                  ⇒ sin A = BC / AC = 3/4

                  ⇒ BC = 3 and AC = 4

By Pythagoras theorem,

AB = √((AC)² - (BC)²) = √(4²-3²) = √(16 - 9) = √7

            ⇒ AB = √7

cos A = side adjacent to angle A / hypotenuse = AB/AC

            ⇒ cos A = √7/4

sin C = side opposite to angle C / hypotenuse = AB/AC

            ⇒ sin C = √7/4

Therefore cos A + sin C = √7/4 + √7/4 = √7/2

Hence proved, cos A + sin C = √7/2

#SPJ3

                           

 

Similar questions
Math, 9 months ago