Math, asked by sullu81, 1 year ago

In triangle ABC ANGLE C = 90 ° FIND THE VALUE OF SINA COSB+COSA SINB COSECA SECB -COTA TANB SINA/SECB+COSA/COSECB-3

Answers

Answered by cutie014
2
sinA× cos(90-B) + cosA×sin (90-B)×cosecA×sec(90-B) - cotA× cosec(90-B)× sinA / sec (90-B) + cos A / cosec (90-B) -3

=sinA × sinA + cosA × cosA × cosecA × cosecA - cotA × cotA × sinA /1÷sinA+ cosA / 1/÷cosA -3

=sinA square + cos A square × cosA square - cotA square × sinA square + cosA square -3


 sin(a^2 )  + cos(a^2) = 1
 csc(a ^2 )  -  cot( {a}^{2} ) = 1
= 1×1×1-3
=1-3
= -2
Similar questions