In triangle ABC angle C=90° ths value of 1+tan^2A=
Answers
In triangle ABC , ∠C = 90° then the value of (1 + tan²A) = cosec²B
Correct question : In triangle ABC , ∠C = 90° then the value of (1 + tan²A)
Given :
In triangle ABC , ∠C=90°
To find :
The value of (1 + tan²A)
Formula :
1. tan(90° - θ) = cot θ
2. 1 + cot²θ = cosec²θ
Solution :
Step 1 of 3 :
Write down the given expression
Here the given expression is (1 + tan²A)
Step 2 of 3 :
Find the relation between ∠A and ∠B
Here it is given that in triangle ABC , ∠C = 90°
We know that in triangle ABC
∠A + ∠B + ∠C = 180°
⇒ ∠A + ∠B + 90° = 180°
⇒ ∠A + ∠B = 180° - 90°
⇒ ∠A + ∠B = 90°
Step 3 of 3 :
Find the value of the expression
1 + tan²A
= 1 + tan²(90° - B)
= 1 + cot²B [ ∵ tan(90° - θ) = cot θ ]
= cosec²B [ ∵ 1 + cot²θ = cosec²θ ]
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
If cosθ+secθ=√2,find the value of cos²θ+sec²θ
https://brainly.in/question/25478419
2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to
https://brainly.in/question/17024513
#SPJ3
The value of (1 + tan²A) is cosec²B.
Given data:
In triangle ABC, ∠C = 90°
To find:
The value of (1 + tan²A)
Concept to be used:
- sec²A - tan²A = 1
- sec(90° - A) = cosecA
Step-by-step explanation:
For triangle ABC,
∠A + ∠B + ∠C = 180°
⇒ ∠A + ∠B + 90° = 180° [ ∵ ∠C = 90° ]
⇒ ∠A + ∠B = 90°
⇒ ∠A = 90° - ∠B
Now, 1 + tan²A
= sec²A [ ∵ sec²A - tan²A = 1 ]
= (secA)²
= {sec(90° - B)}² [ ∵ ∠A = 90° - ∠B ]
= (cosecB)²
= cosec²B
Thus the value of (1 + tan²A) is cosec²B.
#SPJ3