Math, asked by vaibhavi6233, 2 months ago

in triangle ABC~ APQ A- P-B and A-Q-C if A(∆ABC) =16A(∆APQ) .find PQ/BC.10th examples for practice​

Answers

Answered by thapabheem110
4

Answer:

Given

InaCylinder

Volume=1232cm

2

Height=8cm

To find:-

Curved\:surface\:area{}_{(CSA)}Curvedsurfacearea

(CSA)

Total\:Surface\:area {}_{(TSA)}TotalSurfacearea

(TSA)

Solution:-

Let radius=r

as we know that in a Cylinder

{\boxed{Volume={\pi}r {}^{2}h}}

Volume=πr

2

h

Substitute the values

{:}\longrightarrow:⟶ {\dfrac {22}{7}}×{r}^{2}×8=1232

7

22

×r

2

×8=1232

{:}\longrightarrow:⟶ 176{r}^{2}=1232176r

2

=1232

{:}\longrightarrow:⟶ {r}^{2}={\dfrac {1232}{176}}r

2

=

176

1232

{:}\longrightarrow:⟶ {r }^{2}=49r

2

=49

{:}\longrightarrow:⟶ r={\sqrt{49}}r=

49

{:}\longrightarrow:⟶ r=7cmr=7cm

CSA:-

As we know that

{\boxed{CSA=2{\pi}rh}}

CSA=2πrh

Substitute the values

{:}\longrightarrow:⟶ CSA=2×{\dfrac{22}{7}}×7×8CSA=2×

7

22

×7×8

{:}\longrightarrow:⟶ CSA=44×8CSA=44×8

\therefore∴ {\boxed {CSA=352cm {}^{2}}}

CSA=352cm

2

TSA:-

as we know that

{\boxed{TSA=2 {\pi}r (h+r)}}

TSA=2πr(h+r)

Substitute the values

{:}\longrightarrow:⟶ TSA=2×{\dfrac{22}{7}}×7 (8+7)TSA=2×

7

22

×7(8+7)

{:}\longrightarrow:⟶ TSA=2×22×15TSA=2×22×15

\therefore∴ {\boxed{TSA=660cm {}^{2}}}

TSA=660cm

2

Similar questions