Math, asked by khushisharmah03, 10 months ago

in triangle abc (b-c)sinA+(c-a)sinB(a-b)sinC=0

Answers

Answered by harendrachoubay
9

\dfrac{a}{\sin\ A} = \dfrac{b}{\sin\ B} = \dfrac{c}{\sin\ C} = 0, it is proved.

Step-by-step explanation:

L.H.S. = (b - c)\sin\ A +  (c - a)\sin\ B +  (a - b)\sin\ C    ...(1)

We know that,

Sine rule,

\dfrac{a}{\sin\ A} = \dfrac{b}{\sin\ B} = \dfrac{c}{\sin\ C} = k

∴ a = k\times\ sinA, b = k\times\ sinB and

c = k\times\ sinC

Putting the value of a, b and c in (1), we get

= k{\sin\ A\sin\ B - \sin\ A\sin\ C + \sin\ B\sin\ C

- \sin\ A\sin\ B + \sin\ A\sin\ C - \sin\ A\sin\ C}

= k × (0)

= 0 = R.H.S.

Hence, it is proved.

Similar questions