In triangle ABC , BC= AB and <B= 80° , then <A is equal to
Answers
Answered by
1
Answer:
=》50°
=》50°Step-by-step explanation:
- =》50°Step-by-step explanation: angle angle angle= 》180°. .
- =》50°Step-by-step explanation: angle angle angle= 》180°. . angle sum property of triangles angle
- =》50°Step-by-step explanation: angle angle angle= 》180°. . angle sum property of triangles angleB =80^ . .... given
- =》50°Step-by-step explanation: angle angle angle= 》180°. . angle sum property of triangles angleB =80^ . .... given angle A= angle C. equal angles of isosceles triangle.
- =》50°Step-by-step explanation: angle angle angle= 》180°. . angle sum property of triangles angleB =80^ . .... given angle A= angle C. equal angles of isosceles triangle. therefore, 80°+ 2( angle A)=180^
- =》50°Step-by-step explanation: angle angle angle= 》180°. . angle sum property of triangles angleB =80^ . .... given angle A= angle C. equal angles of isosceles triangle. therefore, 80°+ 2( angle A)=180^ angleA = 》(180 - 80) / 2
- =》50°Step-by-step explanation: angle angle angle= 》180°. . angle sum property of triangles angleB =80^ . .... given angle A= angle C. equal angles of isosceles triangle. therefore, 80°+ 2( angle A)=180^ angleA = 》(180 - 80) / 2 =》50^
Answered by
1
50⁰
As BC=AB
⇒∠A=∠C (As angles opposite to equal sides are equal)
Let the angles be x each.
Now by using angle sum property of triangle
∠A+∠B+∠C=180⁰
⇒x+80⁰+x=180⁰
⇒2x=100⁰
⇒x=50⁰
So ∠A=50⁰
Similar questions