In triangle ABC ,cos A +cos(B-C)=
Answers
Answered by
1
Given : triangle ABC
To Find : cos A +cos(B-C)
Solution:
In triangle ABC
A + B + C = 180°
=> A = 180° - (B + C)
> CosA = Cos(180° - (B + C))
=> CosA = - Cos(B + C)
cos A +cos(B-C)= - Cos(B + C) + cos(B-C)
=> cos A +cos(B-C)= cos(B-C) - Cos(B + C)
=> cos A +cos(B-C)= cos(B-C) - Cos(B + C)
Using Cosx - Cosy = -2Sin{(x +y)/2}Sin{(x-y)/2}
=> cos A +cos(B-C)= - 2Sin( B)Sin(-C)
Sin(-x) = - Sinx
=> cos A +cos(B-C)= - 2Sin( B)(-Sin(C)
=> cos A +cos(B-C)= 2Sin( B)Sin(C)
cos A +cos(B-C)= 2Sin( B)Sin(C)
Learn More:
If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in
https://brainly.in/question/7871635
sin θ cos(900-θ) + cos θ sin (900-θ)
https://brainly.in/question/10052334
Similar questions