Math, asked by chaudharydamini482, 2 months ago

In triangle ABC (fig. (b)) , internal bisectors of <B and <C meet at p and external bisectors of these angles meet at Q. prove that <BPC + <BQC = 180°
Please guys help me ☆​

Attachments:

Answers

Answered by gouravgupta65
2

Answer:

a

3

a

3

1

+2=

8

3

Step-by-step explanation:

If

\begin{gathered}2a - \frac{2}{a} + 1 = 0...eq1 \\ \end{gathered}

2a−

a

2

+1=0...eq1

then to find the value of

\begin{gathered} {a}^{3} - \frac{1}{ {a}^{3} } + 2 \\ \\ \end{gathered}

a

3

a

3

1

+2

take cube of eq1

\begin{gathered}2a - \frac{2}{a} = - 1 \\ \\ a - \frac{1}{a} = \frac{ - 1}{2} \\ \\ {(a - \frac{1}{a}) }^{3} = {( \frac{ - 1}{2} )}^{3} \\ \\ {a}^{3} - \frac{1}{ {a}^{3} } - 3 {a}^{2} ( \frac{1}{a} ) + 3a( \frac{1}{ {a}^{2} } ) = - \frac{1}{8} \\ \\ {a}^{3} - \frac{1}{ {a}^{3} } - 3a + \frac{3}{a} = \frac{ - 1}{8} \\ \\ {a}^{3} - \frac{1}{ {a}^{3} } - 3(a - \frac{1}{a}) = \frac{ - 1}{8} \\ \\ {a}^{3} - \frac{1}{ {a}^{3} } - 3( - \frac{1}{2}) = \frac{ - 1}{8} \\ \\ {a}^{3} - \frac{1}{ {a}^{3} } + \frac{3}{2} = \frac{ - 1}{8}\end{gathered}

2a−

a

2

=−1

a−

a

1

=

2

−1

(a−

a

1

)

3

=(

2

−1

)

3

a

3

a

3

1

−3a

2

(

a

1

)+3a(

a

2

1

)=−

8

1

a

3

a

3

1

−3a+

a

3

=

8

−1

a

3

a

3

1

−3(a−

a

1

)=

8

−1

a

3

a

3

1

−3(−

2

1

)=

8

−1

a

3

a

3

1

+

2

3

=

8

−1

\begin{gathered}{a}^{3} - \frac{1}{ {a}^{3} } + 2 = \frac{ - 1}{8} - \frac{3}{2} + 2 \\ \\ = \frac{ - 1 - 12 + 16}{8} \\ \\ {a}^{3} - \frac{1}{ {a}^{3} } + 2 = \frac{3}{8} \\ \\ \end{gathered}

a

3

a

3

1

+2=

8

−1

2

3

+2

=

8

−1−12+16

a

3

a

3

1

+2=

8

3

Hope it helps you.

Answered by rishabh994
1

Step-by-step explanation:

Hlo

How are u ?

hope you are fine...

Btw, u r very beautiful..

Where are u from ?

Plz report after viewing..

Similar questions