In triangle ABC (Figure 3), AD perpendicular BC. Prove that
AC^2 = AB^2 + BC^2 - 2BC X BD
Attachments:
Answers
Answered by
5
Answer:
AC^2 = AB^2 + BC^2 - 2BC.BD
Step-by-step explanation:
In ∆ABD : Using Pythagoras theorem :
= > AB^2 = AD^2 + BD^2 ...( 1 )
In ∆ADC : Using Pythagoras theorem :
= > AC^2 = AD^2 + DC^2
= > AC^2 = AD^2 + ( BC - BD )^2 { BC - BD = DC }
= > AC^2 = AD^2 + BC^2 + BD^2 - 2BC.BD { ( a - b )^2 = a^2 + b^2 - 2ab }
= > AC^2 = AD^2 + BD^2 + BC^2 - 2BC.BD
= > AC^2 = AB^2 + BC^2 - 2BC.BD { from ( 1 ) }
Hence proved.
Similar questions