In triangle ABC, if (1/b+c) + (1/a+c) = 3/a+b+c then prove that angle C = 60 degree
Answers
Answered by
0
Answer:
we know that
a^2 = b^2 + c^2 − 2bc Cos A
b^2 = c^2 + a^2 − 2ca Cos B
c^2 = a^2 + b^2 − 2ab Cos C
angle C given = 60
So,
c^2 = a^2 + b^2 − 2ab cosC
c^2 = a^2 + b^2 − 2ab cos60
c^2 = a^2 + b^2 − ab
Simplify :-
1/(a+c) + 1/(b+c) = 3 / ( a+b+c )
= (a+b+2c) / (a+c) (b+c) = 3 / (a+b+c)
= (a+b+2c) (a+b+c) = 3(a+c) (b+c)
= a^2 + b^2 + 2ab + 2c^2 + 3ac + 3bc = 3ab + 3ac + 3bc + 3c^2
= a^2 + b^2 + 2ab - 3ab = 3 c^2 - 2 c^2
= a^2 + b^2 – ab = c^2
Hence Proved ..
[ Mark as brainlist ]
Similar questions