Math, asked by 123m, 1 year ago

In triangle ABC if AD is the median then show that AB^2+AC^2=2(AD^2+BD^2)

Answers

Answered by hussainshirazip475ss
2

Given

Triangle ABC with median AD

To prove

AB^{2} + AC^{2} = 2(AD^{2} + BD^{2})

Construction

Draw a line AM ⊥ BC.

Proof

Case 1

When , it means AD is perpendicular on BC and both angles are right angle i.e, 90°

Then, In ∆ADB,

According to Pythagoras theorem,

AB² = AD² + BD² ..... (1)

In ∆ADC ,

According to Pythagoras theorem,

AC² = AD² + DC² ...... (2)

AD is median.

So, BD = DC .......(3)

From equations (1) , (2) and (3),

AB² + AC² = AD² + AD² + BD² + BD²

AB² + AC² = 2(AD² + BD²)

Hence Proved.

Case 2

Let us consider that, ADB is an obtuse angle.

In ∆ABM,

By Pythagoras theorem,

AB² = AM² + BM²

AB² = AM² + (BD + DM)²

AB² = AM² + BD² + DM² + 2BD.DM ......(1)

In ∆ACM,

According to Pythagoras theorem,

AC² = AM² + CM²

AC² = AM² + (DC - DM)²

AC² = AM² + DC² + DM² - 2DC.DM ......(2)

From equations (1) and (2),

AB² + AC² = 2AM² + BD² + DC² + 2DM² + 2BD.DM - 2DC.DM

AB² + AC² = 2(AM² + DM²) + BD² + DC² + 2(BD.DM - DC.DM) ...........(3)

According to question, AD is median on BC.

So, BD = DC .....(4)

And in ∆ADM,

According to Pythagoras theorem,

AD² = AM² + DM² ........(5)

Putting equation (4) and equation (5) in equation (3),

AB² + AC² = 2AD² + 2BD² + 2(BD.DM - BD.DM)

AB² + AC² = 2(AD² + BD²)

Hence Proved.

Answered by Salmonpanna2022
1

Answer:

AB² + AC² = 2(AD² + BD²).

Step-by-step explanation:

(i)

In ΔAED,

⇒ AD² = AE² + DE²

⇒ AE² = AD² - DE²

(ii)

In ΔAEB,

⇒ AB² = AE² + BE²

           = AD² - DE² + BE²

           = AD² - DE² + (BD + DE)²  {BE = BD + DE}

           = AD² - DE² + BD² + DE² + 2BD * DE - DE²

           = AD² + BD² + 2BD * DE

(iii)

In ΔAEC,

⇒ AC² = AE² + EC²

           = AD² - DE² + EC²

           = AD² - DE² + (DC - DE)²

           = AD² - DE² + DC² + DE² - 2DC * DE

           = AD² + BD² - 2BD * DE {DC = BD}

On solving (ii) & (iii), we get

⇒ AB² + AC² = AD² + BD² + 2BD * DE + AD² + BD² - 2BD * DE

                     = AD² + BD² + AD² + BD²

                     = 2(AD² + BD)²

Hence proved.!

Attachments:
Similar questions