Math, asked by kp329947, 6 days ago

in triangle abc if angle a = 90° , angle b = 48° . find angle c​

Answers

Answered by Teluguwala
7

Given :-

In triangle abc,

  • ∠a = 90°
  • ∠b = 48°

 \:

To Find :-

The ∠c in a triangle

 \:

Used Formula :-

 \bf \red{\implies Sum \:  of \:  all \:  angles  \:  _{(Triangle)}  = 180°}

 \:

Solution :-

In triangle abc,

  • ∠a = 90°
  • ∠b = 48°

Let,

  • ∠c = x

We know that,

\bf \implies Sum \:  of \:  all \:  angles  \:  _{(Triangle)}  = 180°

So,

\bf \implies  \angle a + \angle \: b \:  +  \angle \: c \:   = 180°

\bf \implies   90° + 48° + x= 180°

\bf \implies   138° + x= 180°

\bf \implies    x= 180°- 138°

 \red{\implies \underline{ \boxed{  \bf  x= 42°}}}

Hence,

∠c = 42°

 \:

Verification :-

\bf \implies Sum \:  of \:  all \:  angles  \:  _{(Triangle)}  = 180°

\bf \implies  \angle a + \angle \: b \:  +  \angle \: c \:   = 180°

We know that,

  • ∠a = 90°
  • ∠b = 48°
  • ∠c = 42°

So,

Take 42° instead of x

Here,

\bf \implies  90° + 48° + 42°= 180°

\bf \implies    \boxed{  \bf180°= 180° }

Hence, verified !

 \:

Answered by mahakulkarpooja615
2

Answer:

The measure of ∠c is 42^{0}.

Step-by-step explanation:

Given : In a Δabc, the ∠a=90^{0}

                                  ∠b=48^{0}

To find : Measure of ∠c =?  

Solution :

  • It is given that, In a Δabc, the ∠a=90^{0}

                                  ∠b=48^{0}

  • We have to find the measure of ∠c.
  • We know that, in a triangle, the sum of all angles in a triangle is 180^{0}.
  • According to this condition, in a Δabc, we have  

            ∠a+∠b+∠c=180^{0}

  • Put values of ∠a=90^{0} and ∠b=48^{0}, we get

                  ∴ 90^{0} +48^{0} +c=180^{0}

                         ∴ 138^{0}+c=180^{0}

  • Transpose 138^{0} to other side, we get

                                ∴ ∠c=180^{0}-138^{0}

                                  ∴ ∠c = 42^{0}

  • ∴ The measure of ∠c is 42^{0}.
Similar questions