In triangle ABC if angleC=pi/2 then prove that sin(A-B)=(a^2-b^2)/a^2+b^2
Answers
Hey !!!
from question
a²+b²/a²-b² =sin(A+B)/sin(A-B)
(by using componendo and dividendo rule )
a²+b²+a²-b²/a²+b²-a²+b² = sin(A+B)+sin(A-B)/sin(A+B) - sin(A-B)
or, a²/b² =. 2sinA×cosB/2cosA×sinB
or,
ksin²A/ksin²B = 2sinA×cosB/2cosA×sinB
or, sinA/sinB =cosB/cosA
or, sinA×cosA =cosA×sinB {° • ° sinA=/ 0, sinB=/0}
or, 2sinA×cosA =2sinB×cosB
or, sin2A - sin2B =0
or, 2cos(A+B) sin(A-B) =0
•°• cos(A+B ) =0 or sin(A-B ) =0
when , cos(A+B) =0
.then
cos(A+B) =cos90°
A+B = 90°
•°• C =(180° - (A+B ) =180°-90° =90° -----------1)
when,
sin(A-B ) = 0
then, A-B =0
•°• A =B--------------2)
from 1) and 2 ) triangle either right angled triangle or iscosecles triangle .
note ➡sin2A = sin2B => 2A =2B
or, 2A =180° -2B
=> A = B
or, A+B =90°
or , c =90°
hope it helps !!!
#Shaun Abraham