Math, asked by avinash20, 1 year ago

In triangle ABC, if c square=a square bsquare, 2s=abc. Then 4s(s-a)(s-b)(s-c) is?

Answers

Answered by bhagatpriyanshu1
45
2s=a+b+c
s=(a+b+c)/2
By Heron's formula
Area=(s(s-a)(s-b)(s-c))1/2

a2+b2=c2
Area=1/2 * a * b

(s(s-a)(s-b)(s-c))1/2=1/2 * a * b
s(s-a)(s-b)(s-c)=a2b2/4
4s(s-a)(s-b)(s-c)=a2b2
Answered by guptasingh4564
2

the values of 4{s(s-a)(s-b)(s-c)} is 2s

Step-by-step explanation:

Given;

c^{2}=a^{2}b^{2} and 2s=abc then find 4s(s-a)(s-b)(s-c)=?

Now,

2s=abc

4s^{2} =a^{2} b^{2} c^{2} (By squaring both sides)

4s^{2} =c^{2} c^{2}  (∵c^{2}=a^{2}b^{2})

c^{2} =2s (By square root on both sides)

By Heron's formula;

Area of a triangle=\sqrt{s(s-a)(s-b)(s-c)}

Also,

Area of a triangle=\frac{1}{2} ab

Then easily write;

\sqrt{s(s-a)(s-b)(s-c)}=\frac{1}{2} ab

{s(s-a)(s-b)(s-c)}=\frac{1}{4}a^{2} b^{2}

4{s(s-a)(s-b)(s-c)}=a^{2} b^{2}

4{s(s-a)(s-b)(s-c)}=c^{2}

Plug the value c^{2} =2s

4{s(s-a)(s-b)(s-c)}=2s

So the values of 4{s(s-a)(s-b)(s-c)} is 2s

Similar questions