In triangle ABC, if c square=a square bsquare, 2s=abc. Then 4s(s-a)(s-b)(s-c) is?
Answers
Answered by
45
2s=a+b+c
s=(a+b+c)/2
By Heron's formula
Area=(s(s-a)(s-b)(s-c))1/2
a2+b2=c2
Area=1/2 * a * b
(s(s-a)(s-b)(s-c))1/2=1/2 * a * b
s(s-a)(s-b)(s-c)=a2b2/4
4s(s-a)(s-b)(s-c)=a2b2
s=(a+b+c)/2
By Heron's formula
Area=(s(s-a)(s-b)(s-c))1/2
a2+b2=c2
Area=1/2 * a * b
(s(s-a)(s-b)(s-c))1/2=1/2 * a * b
s(s-a)(s-b)(s-c)=a2b2/4
4s(s-a)(s-b)(s-c)=a2b2
Answered by
2
∴ the values of is
Step-by-step explanation:
Given;
and then find
Now,
⇒ (By squaring both sides)
⇒ (∵)
⇒ (By square root on both sides)
By Heron's formula;
Area of a triangle
Also,
Area of a triangle
Then easily write;
⇒
⇒
⇒
Plug the value
∴
So the values of is
Similar questions