Math, asked by sms83, 1 year ago

In triangle ABC, if tanA:tanB:tanC = 1:2:3 then sinA:sinB:sinC = ?​

Answers

Answered by franktheruler
11

Answer:

sinA : sinB : sinC = 5 : 2√2 : 3

Step-by-step explanation:

According to the question tanA : tanB : tanC = 1:2:3

Let tanA = k ,  tanB = 2k and tanC = 3k

We know that A+B+C = π.

So, C = π − ( A+B )  

tanC = 3k

⇒tan( π − (A+B) ) = 3k

⇒ tan(A+B) = −3k

⇒ ( tanA+tanB ) / ( 1−tanAtanB ) = −3k

⇒ ( k+2k) / [ 1−k(2k) ] = −3k

⇒  3k = −3k ( 1−2k²)

⇒ 2k²−1 = 1

⇒ 2k² = 2

⇒ k = 1

so we get tanA=1,

tanB=2,

tanC=3

⇒sinA/cosA = 1

⇒ sinA = cosA

⇒ sin²A = cos²A

⇒ sin²A = 1−sin2A

⇒ 2sin²A = 1

⇒ sinA = 1 / √2

Similarly, sinBcosB=2

⇒ sinB = 2cosB

⇒sin²B=4cos²B

⇒ sin2B = 4−4sin²B

⇒ 5sin²B = 4

⇒sinB = 2 / √ 5

Similarly, sinC/cosC=3

⇒ sinC = 3cosC

⇒ sin²C = 9cos²C

⇒ sin²C = 9−9sin²C

⇒ 10sin²C = 9

⇒ sinC = 3 / √10

So, sinA : sinB : sinC = 1/√2 : 2/√5 : 3/√10

                                  = 5 : 2√2 : 3

Similar questions