Math, asked by GeniusPratham, 1 year ago

in triangle ABC,if the side are 7,4√3 and √13 cm ,prove that the smallest angle is 30°.

Answers

Answered by mathdude200
25
check the attachment
Attachments:

GeniusPratham: ar
mathdude200: helli
GeniusPratham: aap ne jo question post kiya tha vo mere ko smaj me nahi aaraha
GeniusPratham: do you use whatsapp
GeniusPratham: take my no. plz mujhe vaha smja do plz plz
mathdude200: surw
mathdude200: sure
mathdude200: plz
mathdude200: 8222026666
GeniusPratham: 8840231481
Answered by erinna
16

Answer:

The smallest angle is 30°.

Step-by-step explanation:

Given information: In triangle ABC,if the side are 7,4√3 and √13 cm.

To prove: The smallest angle is 30°.

Proof:

Let a=7, b=4√3 and c=√13.

In a triangle, the smallest angle has shortest opposite side.

c=√13 is shortest side.

Cosine formula:

\cos C=\frac{a^2+b^2-c^2}{2ab}

Substitute the given value in the above formula.

\cos C=\frac{(7)^2+(4\sqrt{3})^2-(\sqrt{13})^2}{2(7)(4\sqrt{3})}

\cos C=\frac{49+48-13}{56\sqrt{3}}

\cos C=\frac{84}{56\sqrt{3}}

\cos C=\frac{3}{2\sqrt{3}}

On rationalization.

\cos C=\frac{3\times \sqrt{3}}{2\sqrt{3}\times \sqrt{3}}

\cos C=\frac{3\times \sqrt{3}}{2\times 3}

\cos C=\frac{\sqrt{3}}{2}

\cos C=\cos 30^{\circ}

On comparing both sides.

C=30^{\circ}

Hence proved.

Similar questions