In triangle ABC is sin cube A + sin cube b + sin cube c equal to 3 sin a.sin b.sin c then triangle is
Answers
Answered by
1
Answer:
MATHS
avatar
Asked on December 20, 2019 by
Prakrati Sah
In any triangle ABC,
sin
3
Acos(B−C)+sin
3
Bcos(C−A)+sin
3
Ccos(A−B)=msinAsinBsinC. Find m
Share
Study later
ANSWER
Given:
A+B+C=π
∴A=π−(B+C)
LHS=sin
3
Acos(B−C)+sin
3
Bcos(C−A)+sin
3
Ccos(A−B)
=sin
2
Asin(B+C)cos(B−C)+sin
2
Bsin(C+A)cos(C−A)+sin
2
Csin(A+B)cos(A−B)
=
2
1
sin
2
A(sin2B+sin2C)+
2
1
sin
2
B(sin2C+sin2A)+
2
1
sin
2
C(sin2A+sin2B)
=sin
2
A(sinBcosB+sinCcosC)+sin
2
B(sinCcosC+sinAcosA)+sin
2
C(sinAcosA+sinBcosB)
=sinAsinB(sinAcosB+sinAcosB)+sinBsinC(sinBcosC+sinBcosC)+
sinCsinA(sinCcosA+sinCcosA)
=sinAsinBsin(A+B)+sinBsinCsin(B+C)+sinCsinAsin(C+A)
=3sinAsinBsinC= RHS
Hope it helps you
Mark me brainlist
Similar questions