Math, asked by parinita10, 3 months ago

In triangle ABC, PQ is a line segment intesecting AB at P and AC at Q such that seg PQ||seg BC. If PQ divides triangle ABC into two equal parts having equal areas, Find BP/AB.​

Answers

Answered by harshavardhan20069
0

Answer:

Step-by-step explanation:

area(△APQ)=area(△BPQC)

⇒  area(△APQ)=area(△ABC)−area(△APQ)

⇒  2area(△APQ)=area(△ABC)

∴    

area(△APQ)

area(△ABC)

​  

=  

1

2

​  

     ---- ( 1 )

Now, in △ABC and △APQ,

∠BAC=∠PAQ           [ Common angles ]

∠ABC=∠APQ          [ Corresponding angles ]

∴   △ABC∼△APQ           [ By AA similarity ]

∴    

area(△APQ)

area(△ABC)

​  

=  

AP  

2

 

AB  

2

 

​  

 

∴    

1

2

​  

=  

AP  

2

 

AB  

2

 

​  

           [ From ( 1 ) ]

⇒    

AP

AB

​  

=  

1

2

​  

 

​  

 

⇒    

AB

AB−BP

​  

=  

2

​  

 

1

​  

 

⇒  1−  

AB

BP

​  

=  

2

​  

 

1

​  

 

⇒    

AB

BP

​  

=1−  

2

​  

 

1

​  

 

∴    

AB

BP

​  

=  

2

​  

 

2

​  

−1

Similar questions