in triangle abc prove that B minus C cot a by 2 + c minus A cot B by 2 + a minus b cos C by 2 is equal to zero
Answers
Answer:
(b-c)Cot(A/2) + (c-a)Cot(B/2) + (a -b)Cot(C/2) = 0
Step-by-step explanation:
(b-c)Cot(A/2) + (c-a)Cot(B/2) + (a -b)Cot(C/2) = 0
a/SinA = bSinB = c/SinC = k
=> a = kSinA , b = kSinB , c = kSinC
LHS
= k { (SinB - SInC)Cot(A/2) + (SinC - SinA)Cot(B/2) + (SinA - SinB)Cot(C/2)}
Sinx - Siny = 2Sin((x - y)/2)Cos((x+y)/2)
= k { 2Sin((B-C)/2)Cos((B+C)/2)Cot(A/2) + 2Sin((C-A)/2)Cos((C+A)/2)Cot(B/2) + 2Sin((A-B)/2)Cos((A+B)/2)Cot(C/2) }
A + B + C = π
=> A + B = π- C
=> (A + B)/2 = π/2 - C/2
=> Cos (A + B)/2 = Cos( π/2 - C/2) = Sin(C/2)
Simiallrly Cos(B + C)/2 = Sin(A/2) & Cos(C + A)/2 = Sin(B/2)
= k { 2Sin((B-C)/2)Sin(A/2)Cot(A/2) + 2Sin((C-A)/2)Sin(B/2)Cot(B/2) + 2Sin((A-B)/2)Sin(C/2)Cot(C/2) }
Cotx Sinx = Cosx
= k { 2Sin((B-C)/2)Cos(A/2) + 2Sin((C-A)/2)Cos(B/2) + 2Sin((A-B)/2)Cos(C/2) }
= k { 2Sin((B-C)/2)Sin((B+C)/2) + 2Sin((C-A)/2)Sin((C+A)/2) + 2Sin((A-B)/2)Sin((A+B)/2) }
Using Sin(x + y)Sin(x - y) = Sin²x - Sin²y
= 2k ( Sin²B - Sin²C + Sin²C - Sin²A + Sin²A - Sin²B)
= 2k * 0
= 0
= RHS
QED
Proved
(b-c)Cot(A/2) + (c-a)Cot(B/2) + (a -b)Cot(C/2) = 0